Abstract

AbstractThis article provides an algebraic study of the propositional system $\mathtt {InqB}$ of inquisitive logic. We also investigate the wider class of $\mathtt {DNA}$ -logics, which are negative variants of intermediate logics, and the corresponding algebraic structures, $\mathtt {DNA}$ -varieties. We prove that the lattice of $\mathtt {DNA}$ -logics is dually isomorphic to the lattice of $\mathtt {DNA}$ -varieties. We characterise maximal and minimal intermediate logics with the same negative variant, and we prove a suitable version of Birkhoff’s classic variety theorems. We also introduce locally finite $\mathtt {DNA}$ -varieties and show that these varieties are axiomatised by the analogues of Jankov formulas. Finally, we prove that the lattice of extensions of $\mathtt {InqB}$ is dually isomorphic to the ordinal $\omega +1$ and give an axiomatisation of these logics via Jankov $\mathtt {DNA}$ -formulas. This shows that these extensions coincide with the so-called inquisitive hierarchy of [9].1

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.