Abstract

In this paper, we discuss methods for developing a stochastic model which incorporates behavior differences in the predation movements of Anelosimus studiosus (a subsocial spider). Stochastic models for animal movement and, in particular, spider predation movement have been developed previously; however, this paper focuses on the development and implementation of the necessary mathematical and statistical methods required to expand such a model in order to capture a variety of distinct behaviors. A least squares optimization algorithm is used for parameter estimation to fit a single stochastic model to an individual spider during predation resulting in unique parameter values for each spider. Similarities and variations between parameter values across the spiders are analyzed and used to estimate probability distributions for the variable parameter values. An aggregate stochastic model is then created which incorporates the individual dynamics. The comparison between the optimal individual models to the aggregate model indicate the methodology and algorithm developed in this paper are appropriate for simulating a range of individualistic behaviors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.