Abstract

The COVID-19 pandemic has remarkably heightened concerns regarding the prediction of communicable disease spread. This study introduces an innovative agent-based modeling approach. In this model, the quantification of human-to-human transmission aligns with the dynamic variations in the viral load within an individual, termed “within-host” and adheres to the susceptible–infected–recovered (SIR) process, referred to as “between-host.” Variations in the viral load over time affect the infectivity between individual agents. This model diverges from the traditional SIR model, which employs a constant transmission probability, by incorporating a dynamic, time-dependent transmission probability influenced by the viral load in a host agent. The proposed model retains the time-integrated transmission probability characteristic of the conventional SIR model. As observed in this model, the overall epidemic size remains consistent with the predictions of the standard SIR model. Nonetheless, compared to predictions based on the classical SIR process, notable differences existed in the peak number of the infected individuals and the timing of this peak. These nontrivial differences are induced by the direct correlation between the time-evolving transmission probability and the viral load within a host agent. The developed model can inform targeted intervention strategies and public health policies by providing detailed insights into disease spread dynamics, crucial for effectively managing epidemics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.