Abstract

In this paper, we propose a new affine scaling trust-region algorithm in association with nonmonotonic interior backtracking line search technique for solving nonlinear equality systems subject to bounds on variables. The trust-region subproblem is defined by minimizing a squared Euclidean norm of linear model adding the augmented quadratic affine scaling term subject only to an ellipsoidal constraint. By using both trust-region strategy and interior backtracking line search technique, each iterate switches to backtracking step generated by the general trust-region subproblem and satisfies strict interior point feasibility by line search backtracking technique. The global convergence and fast local convergence rate of the proposed algorithm are established under some reasonable conditions. A nonmonotonic criterion should bring about speeding up the convergence progress in some ill-conditioned cases. The results of numerical experiments are reported to show the effectiveness of the proposed algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.