Abstract
Abstract. Aerosol vertical stratification is important for global climate and planetary boundary layer (PBL) stability, and no single method can obtain spatiotemporally continuous vertical profiles. This paper develops an online data assimilation (DA) framework for the Eulerian atmospheric chemistry-transport model (CTM) Nested Air Quality Prediction Model System (NAQPMS) with the Parallel Data Assimilation Framework (PDAF) as the NAQPMS-PDAF for the first time. Online coupling occurs based on a memory-based way with two-level parallelization, and the arrangement of state vectors during the filter is specifically designed. Scaling tests demonstrate that the NAQPMS-PDAF can make efficient use of parallel computational resources for up to 25 000 processors with a weak scaling efficiency of up to 0.7. The 1-month long aerosol extinction coefficient profiles measured by the ground-based lidar and the concurrent hourly surface PM2.5 are solely and simultaneously assimilated to investigate the performance and application of the DA system. The hourly analysis and subsequent 1 h simulation are validated through lidar and surface PM2.5 measurements assimilated and not assimilated. The results show that lidar DA can significantly improve the underestimation of aerosol loading, especially at a height of approximately 400 m in the free-running (FR) experiment, with the mean bias (BIAS) changing from −0.20 (−0.14) km−1 to −0.02 (−0.01) km−1 and correlation coefficients increasing from 0.33 (0.28) to 0.91 (0.53) averaged over sites with measurements assimilated (not assimilated). Compared with the FR experiment, simultaneously assimilating PM2.5 and lidar can have a more consistent pattern of aerosol vertical profiles with a combination of surface PM2.5 and lidar, independent extinction coefficients from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), and aerosol optical depth (AOD) from the Aerosol Robotic Network (AERONET). Lidar DA has a larger temporal impact than that in PM2.5 DA but has deficiencies in subsequent quantification on the surface PM2.5. The proposed NAQPMS-PDAF has great potential for further research on the impact of aerosol vertical distribution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.