Abstract
The reduced-order extended Kalman (ROEK) filter has been introduced by Cane et al. (J. Geophys. Res. 101(1996) 599) as a means to reduce the cost of the extended Kalman filter. It essentially consists of projecting the dynamics of the model onto a low dimensional subspace obtained via an empirical orthogonal functions (EOF) analysis. However, the choice of the dimension of the reduced-state space (or the number of EOFs to be retained) remains a delicate question. Indeed, Cane et al. found that increasing the number of EOFs does not improve, and even sometimes worsens, the performance of the ROEK filter. We speculate that this is probably due to the optimal character of the EOF analysis that is optimal in a time-mean sense only. In this respect, we develop a simple efficient adaptive scheme to tune, according to the model mode, the dimension of the reduced-state space, which would be therefore variable in time. In a first application, twin experiments are conducted in a realistic setting of the Ocean Parallèlisè (OPA) model in the tropical Pacific. The observations are assumed to be synthetic altimeter data sampled according to the Topex/Poseidon mission features. The adaptive scheme is shown to improve the performance of the ROEK filter especially during model unstable periods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.