Abstract

In this paper an adaptive method of shrinkage of the wavelet coefficients is presented. In the method, the wavelet coefficients are divided into two classes by a threshold. One class of them with the smaller absolute values at a scale is transformed with a proportional relation,another class with the larger absolute values at the same scale is transformed with a linear function. The threshold and the coefficient in the proportional relation or in the linear function are determined by the principle of minimizing the Stein’s unbiased risk estimate. In the paper, the method of estimation of the threshold and the coefficient is given and the adaptive method of shrinkage of the wavelet coefficients is applied to image denoising. Examples in the paper show that the presented method has an advantage over SureShrink from the point of view of both the Stein’s unbiased risk estimate and the signal-to-noise ratio. In addition, the method takes almost the same computing time as the SureShrink in image denoising.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.