Abstract
Researchers have achieved varying levels of successes in proposing different methods to modify the particle's velocity updating formula for better performance of Particle Swarm Optimization (PSO). Variants of PSO that solved high-dimensional optimization problems up to 1,000 dimensions without losing superiority to its competitor(s) are rare. Meanwhile, high-dimensional real-world optimization problems are becoming realities hence PSO algorithm therefore needs some reworking to enhance it for better performance in handling such problems. This paper proposes a new PSO variant called Adaptive Velocity PSO (AV-PSO), which adaptively adjusts the velocity of particles based on Euclidean distance between the position of each particle and the position of the global best particle. To avoid getting trapped in local optimal, chaotic characteristics was introduced into the particle position updating formula. In all experiments, it is shown that AV-PSO is very efficient for solving low and high-dimensional global optimization problems. Empirical results show that AV-PSO outperformed AIWPSO, PSO <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">rank</inf> , CRIW-PSO, def-PSO, e1-PSO and APSO. It also performed better than LSRS in many of the tested high-dimensional problems. AV-PSO was also used to optimize some high-dimensional problems with 4,000 dimensions with very good results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.