Abstract

Lithium-ion batteries (LiBs) are the most important part of electric vehicle (EV) systems. Because there are two different degradation rates during LiB degradation, there are many two-phase models for LiBs. However, most of these methods do not consider the randomness of the changing point in the two-phase model and cannot update the change time in real time. Therefore, this paper proposes a method based on the combination of the two-phase Wiener model and an extreme learning machine (ELM). The two-phase Wiener model is used to derive the mathematical expression of the remaining useful life (RUL), and the ELM is implemented to adaptively detect the changing point. Based on the Poisson distribution, the distribution of the changing time is derived as a gamma distribution. To evaluate the theoretical results and practicality of the proposed method, we perform both numerical and practical simulations. The results of the simulations show that due to the precise and adaptive detection of changing points, the proposed method produces a more accurate RUL prediction than existing methods. The error of our method for detecting the changing point is about 4% and the mean prediction error of RUL in the second phase is improved from 4.39 cycles to 1.61 cycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.