Abstract
We study the problem of scheduling a set of jobs with non-identical capacity requirements on parallel non-identical batch processing machines to minimise the makespan. We formulate the problem as a nonlinear integer programming model. Given that this problem is NP-hard, we propose a genetic algorithm to heuristically solve it. An adaptive penalty is combined to guide the search process to explore promising feasible and infeasible regions. Random problem instances were generated to test the approach with respect to solution quality and run time. Computational results demonstrate the effectiveness of the proposed algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Applied Management Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.