Abstract

As an intelligent algorithm inspired by the foraging behavior in nature, particle swarm optimization (PSO) is famous for its few parameters, easy to implement and higher convergence accuracy. However, PSO also has a weakness over the local search, also called the prematurity, which resulted in the convergence accuracy reduced and the convergence speed slowed. For this, extremal optimization (EO), an excellent local search algorithm, has been introduced to be improved (CEO) and enhance the local search of PSO. Meanwhile, for improving its global search further, an improved opposition-based learning based on refraction principle (UOBL) has been chosen to enhance the global search of PSO, which is a better global optimization algorithm. In order to balance both of PSO to improve its optimization performance further, an adaptive hybrid PSO based on UOBL and CEO (AHOPSO-CEO) is proposed in this article. The large number of experiment results and analysis reveals that AHOPSO-CEO achieves better performance with other algorithms on the convergence speed and convergence accuracy for optimization problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.