Abstract

The Ice, Cloud and land Elevation Satellite-2 (ICESat-2) mission of the National Aeronautics and Space Administration is scheduled to launch in 2017. This upcoming mission aims to provide data to determine the temporal and spatial changes of ice sheet elevation, sea ice freeboard, and vegetation canopy height. A photon-counting lidar onboard ICESat-2 yields point clouds resulting from surface returns and noise. In support of the ICESat-2 mission, this letter derives an adaptive density-based model that is capable of detecting the ground surface and vegetation canopy in photon-counting laser altimeter data. Based on results from point clouds generated by a first principle simulation and those observed by the Multiple Altimeter Beam Experimental Lidar, the ground and canopy returns can be reliably extracted using the proposed approach. Further study on performance assessment shows that smoother surfaces will result in improved accuracy of ground height estimation. In addition, the proposed detection approach has better performance in environments with lower noise, although the performance evaluation metric F-measure does not vary significantly over a range of noise rates (0.5-5 MHz). This proposed approach is generally applicable for surface and canopy finding from photon-counting laser altimeter data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.