Abstract

SummaryIn this paper, we propose a model predictive control scheme for discrete‐time linear invariant systems based on inexact numerical optimization algorithms. We assume that the solution of the associated quadratic program produced by some numerical algorithm is possibly neither optimal nor feasible, but the algorithm is able to provide estimates on primal suboptimality and primal feasibility violation. By adaptively tightening the complicating constraints, we can ensure the primal feasibility of the approximate solutions generated by the algorithm. We derive a control strategy that has the following properties: the constraints on the states and inputs are satisfied, asymptotic stability of the closed‐loop system is guaranteed, and the number of iterations needed for a desired level of suboptimality can be determined. The proposed method is illustrated using a simulated longitudinal flight control problem. Copyright © 2014 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.