Abstract

Simple models are widely used to understand the mechanics of human walking. The optimization-based minimal biped model and spring-loaded-inverted-pendulum (SLIP) model are two popular models that can achieve human-like walking patterns. However, ground reaction forces (GRF) from these two models still deviate from experimental data. In this paper, we proposed an actuated dissipative spring-mass model by integrating these two models to realize more human-like GRF patterns. We first explored the function of stiffness, damping, and weights of both energy cost and force cost in the objective function and found that these parameters have distinctly different influences on the optimized gait and GRF profiles. The stiffness and objective weight affect the number and size of peaks in the vertical GRF and stance time. The damping changes the relative size of the peaks but has little influence on stance time. Based on these observations, these parameters were manually tuned at three different speeds to approach experimentally measured vertical GRF and the highest correlation coefficient can reach 0.983. These results indicate that the stiffness, damping, and proper objective functions are all important factors in achieving human-like motion for this simple walking model. These findings can facilitate the understanding of human walking dynamics and may be applied in future biped models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.