Abstract

Classical approximate Riemann solvers are known to be too much dissipative in the low-Mach number regime. For this reason, since the Mach number in liquids is generally very small, usual upwind schemes may provide inaccurate solutions when applied to the simulation of two-phase flows. In this paper, to circumvent this difficulty while keeping a compressible model for the description of both gas and liquid, an original accurate low-Mach scheme is introduced and theoretically studied. Extending some ideas already used for the gas dynamics system, the proposed scheme is based on a centred formulation for the pressure gradient term in the momentum equation and on the introduction of a stabilising term proportional to the pressure difference between two neighbouring cells. The scheme stability is ensured, and theoretically proved under a convective CFL-like condition, by using a semi-implicit time discretisation algorithm. Finally, the correct asymptotic behaviour of the scheme in the limit of small Mach numbers is assessed on several academic test cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.