Abstract

The diffusion regime (sub-diffusive, standard, or super-diffusive) is defined by the order of the derivative in the corresponding transport equation. We develop an accurate computational method for the direct estimation of the diffusion regime. The method is based on the derivative order estimation using the asymptotic analytic solutions of the diffusion equation with the integer order and the time-fractional derivatives. The robustness and the computational cheapness of the proposed method are verified using the experimental methane and methyl alcohol transport kinetics through the catalyst pellet.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.