Abstract

Collinear laser spectroscopy (CLS) has been performed in a multi-reflection time-of-flight (MR-ToF) device operated in single-pass mode, i.e., without confining the ions in the ion trap. While our Multi Ion Reflection Apparatus for Collinear Laser Spectroscopy (MIRACLS) aims to increase the CLS sensitivity by storing ions in the MR-ToF device, the present work characterises conventional single-passage CLS as a preparatory step for the upcoming comparison with MIRACLS’ multi-pass mode. To this end, the isotope shift in the 3s2S1/2→3p2P3/2 transition (D2 line) between ions of the magnesium isotopes 24Mg and 26Mg has been measured under varying experimental conditions. Our result agrees with the precise literature value. Associated studies of systematic uncertainties demonstrate a measurement accuracy of better than 20 MHz in this new apparatus. This value will serve as the reference for analogous studies to be performed in the MIRACLS approach in which ions are trapped in the MR-ToF device for thousands of revolutions and probed by the spectroscopy laser during each passage.

Highlights

  • For five decades, atomic-physics techniques have very successfully provided accurate and precise information about nuclear ground state properties of short-lived radionuclides [1,2,3,4,5,6,7]

  • Collinear laser spectroscopy (CLS) has been performed in a multi-reflection time-of-flight (MR-ToF) device operated in single-pass mode, i.e., without confining the ions in the ion trap

  • Associated studies of systematic uncertainties demonstrate a measurement accuracy of better than 20 MHz in this new apparatus. This value will serve as the reference for analogous studies to be performed in the MIRACLS approach in which ions are trapped in the MR-ToF device for thousands of revolutions and probed by the spectroscopy laser during each passage

Read more

Summary

Introduction

Atomic-physics techniques have very successfully provided accurate and precise information about nuclear ground state properties of short-lived radionuclides [1,2,3,4,5,6,7]. While laser spectroscopy accesses nuclear spins, charge radii and electromagnetic moments, ion traps have become invaluable tools for precision mass measurements. Within the latter, multi-reflection time-of-flight (MR-ToF) instruments have in recent years emerged in the field of rare isotope science as versatile mass separators and spectrometers [8,9,10,11,12,13,14,15,16].

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.