Abstract
AbstractIn this paper, we present an accelerated micro genetic algorithm for numerical optimization. It is implemented by incorporating the conventional micro genetic algorithm with a local optimizer based on heuristic pattern move and Aitken Δ2 acceleration method. Performance tests with three benchmarking functions indicate that the presented algorithm has excellent convergence performance for multimodal optimization problems. The number of objective function evaluations required to obtain global optima is only 5.4-11.9% of that required by using conventional micro genetic algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.