Abstract

BackgroundGene trapping is a powerful tool for gene discovery and functional genomics in both animals and plants. Upon insertion of the gene trap construct into an expressed gene, splice donor and acceptor sites facilitate the generation of transcriptional fusions between the flanking sequence and the reporter. Consequently, detection of reporter gene expression allows the identification of genes based on their expression pattern. Up to now rice is the only cereal crop for which gene trap approaches exist. In this study we describe a gene trap system in barley (Hordeum vulgare L.) based on the maize transposable elements Ac/Ds.ResultsWe generated gene trap barley lines by crossing Ac transposase expressing plants with multiple independent transformants carrying the Ds based gene trap construct GTDsB. Upstream of the β-Glucuronidase start codon GTDsB carries splice donor and acceptor sites optimized for monocotyledonous plants. DNA blot analysis revealed GTDsB transposition frequencies of 11% and 26% in the F1 and F2 generation of gene trap lines and perpetuation of transposition activity in later generations. Furthermore, analysis of sequences flanking transposed GTDsB elements evidenced preferential insertion into expressed regions of the barley genome. We screened leaves, nodes, immature florets, pollinated florets, immature grains and seedlings of F2 plants and detected GUS expression in 51% (72/141) of the plants. Thus, reporter gene expression was found in 24 of the 28 F1 lines tested and in progeny of all GTDsB parental lines.ConclusionDue to the frequent transposition of GTDsB and the efficient expression of the GUS reporter gene, we conclude that this Ac/Ds-based gene trap system is an applicable approach for gene discovery in barley. The successful introduction of a gene trap construct optimized for monocots in barley contributes a novel functional genomics tool for this cereal crop.

Highlights

  • Gene trapping is a powerful tool for gene discovery and functional genomics in both animals and plants

  • Upon insertion of the gene trap construct into an expressed gene, splice donor and acceptor sites facilitate the generation of transcriptional fusions between the flanking sequence and the reporter

  • Reporter gene, we conclude that this Ac/Ds-based gene trap system is an applicable approach for gene discovery in barley

Read more

Summary

Introduction

Gene trapping is a powerful tool for gene discovery and functional genomics in both animals and plants. Upon insertion of the gene trap construct into an expressed gene, splice donor and acceptor sites facilitate the generation of transcriptional fusions between the flanking sequence and the reporter. Gene trap constructs are designed to detect the expression of a chromosomal gene upon insertion into its transcribed region. The inserted gene trap reports the gene expression pattern and a visible mutant phenotype is not required for gene identification. The gene traps are characterized by splice acceptor sites and sometimes an intron upstream of the reporter gene coding region. These structural features facilitate the production of in-frame reporter protein fusions regardless of insertion into intron or exon sequences

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.