Abstract

Abstract Biomass partitioning is a pivotal part of the function-structure feedback mechanism. To improve the simulation of aboveground biomass partitioning in growth models for rapeseed (Brassica napus L.), we developed an aboveground biomass partitioning coefficient model for main stem and primary branches, and the stems, leaves, and pods on them, by quantifying the relationships between the biomass partitioning coefficient of major organs aboveground and physiological day of development (DPD). To realize this goal, dry matter data of organs were derived from an outdoor experiment with rapeseed cultivars Ningyou18 and Ningza19 under different fertilizer and transplanting density treatments in the 2012–2015 growing seasons. The model was fitted by calculating the partitioning coefficients of different organs as the ratio of the biomass of organs and their superior organs and normalizing DPD into the [0, 1] interval. Various model variables were parameterized to explain the effects of cultivar and environmental conditions on biomass partitioning coefficients for different organs. Our descriptive models were validated with independent experimental data, the correlation (r) of simulation and observation values all had significant level at P

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.