Abstract

The energetically favorable reaction paths for the unimolecular decomposition of the primary addition product of OH + C/sub 2/H/sub 4/ have been studied with ab initio techniques. Equilibrium geometries and transition structures were fully optimized with 3-21G and 6-31G* basis sets at the Hartree-Fock level. Heats of reaction and barrier heights have been computed with Moeller-Plesset perturbation theory up to fourth order, with and without annihilation of spin contamination. At the MP4 level barrier heights are lowered by 2-7 kcal/mol when the largest spin contaminant is removed. After the addition of OH + C/sub 2/H/sub 4/ to form the 2-hydroxyethyl radical, the most favorable reaction path (other than decomposition to reactants) is the (1,3)-hydrogen shift to form ethoxy radical followed by a dissociation into CH/sub 3/ + CH/sub 2/O. Other slightly higher energy paths include dissociation of ethoxy into H + CH/sub 3/CHO and decomposition of the 2-hydroxyethyl radical into H + HOCHCH/sub 2/.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.