Abstract

In our continuing attempts to understand theoretically various surface properties such as corrosion and potential catalytic activity of actinide surfaces in the presence of environmental gases, we report here the first ab initio study of molecular adsorption on the double hexagonal packed (dhcp) americium (0001) surface. Dissociative adsorption is found to be energetically more favorable compared to molecular adsorption. The most stable configuration corresponds to a horizontal approach molecular dissociation with the oxygen atoms occupying neighboring h3 sites, with chemisorption energies at the NSOC and SOC theoretical levels being 9.395 eV and 9.886 eV, respectively. The corresponding distances of the oxygen molecule from the surface and oxygen-oxygen distance were found to be 0.953 Ang. and 3.731 Ang., respectively. Overall our calculations indicate that chemisorption energies in cases with SOC are slightly more stable than the cases with NSOC in the 0.089-0.493 eV range. The work functions and net magnetic moments respectively increased and decreased in all cases compared with the corresponding quantities of the bare dhcp Am (0001) surface. The adsorbate-substrate interactions have been analyzed in detail using the partial charges inside the muffin-tin spheres, difference charge density distributions, and the local density of states. The effects, if any, of chemisorption on the Am 5f electron localization-delocalization characteristics in the vicinity of the Fermi level are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.