Abstract

Although there is a consensus that large, polarizable anions will adsorb to the air-water interface, the precise interactions that give rise to surface enhancement are still being debated. Previously, we have demonstrated that there is a significant dependence on the choice of molecular interaction potential for I-adsorption at the air-water interface. Specifically, density functional theory (DFT) based interaction potentials lead to significantly less adsorption than empirical interaction potentials that include polarization. We have also demonstrated that DFT based interaction potentials can accurately capture the structure of the first solvation shell of both simple and polyatomic anions as compared to multi-edge X-ray absorption fine structure (XAFS) experiments. We utilize DFT to examine the local hydration structure of SCN- and IO3- that exhibit both chaotropic and kosmotropic characteristics. We compare and contrast the solvation structure of the polyatomic anions with the series of halide anions. A picture emerges where we can correlate local solvation structure to the ions' position in the Hofmeister series.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.