Abstract
We describe the characteristics of a microchannel-based optical backplane including signal-to-noise ratio (SNR), interconnect distances, and data transfer rates. The backplane employs 250 /spl mu/m-spacing two-dimensional (2-D) vertical cavity surface emitting lasers (VCSELs) and a microlens array to implement 500 /spl mu/m-, 750 /spl mu/m-, and 1-mm optical beam arrays. By integrating the transmitter and a multiplexed polymeric hologram as a deflector/beam-splitter for the guided-wave optical backplane, the result demonstrates a multibus line architecture and its high-speed characteristics. Maximum interconnect distances of 6 cm and 14 cm can be achieved to satisfy 10/sup -12/ bit error rate (BER) using 2/spl times/2 beams of 500 /spl mu/m- and 1 mm-spacing array devices. The total data transfer rate of the developed backplane has shown 8 Gb/s from eye diagram measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.