Abstract

ABSTRACTStarch‐lipid interactions involving native and acetylated pea starch were studied by differential scanning calorimetry (DSC) and measurements of iodine affinity. Lipids including lauric acid, monopalmitin, and butterfat were added to aqueous starch dispersions after the starch was gelatinized at 85°C. DSC thermal curves of gelatinized modified pea starch systems containing fatty acid or monoglyceride did not show DSC transitions indicative of amylose complexes with external lipids, whereas a DSC endotherm of amylose‐lipid complexes was observed for the corresponding native starch‐lipid systems. However, iodine binding studies revealed that acetylated pea starch amylose complexed with added fatty acid or monoglyceride in the modified pea starch‐lipid composites. The failure of DSC detection of the complexes in these systems was attributed to the absence of crystalline structures of acetylated pea starch amylose complexes. Furthermore, acetylation of starch decreased the complexing ability of the pea starch amylose as revealed by a reduction in iodine affinity. Both DSC and iodine affinity studies showed that neither native nor modified pea starch interacted to a significant extent with butterfat that consisted mainly of triglycerides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.