Abstract
Senile plaques, mainly diffuse, and cerebral amyloid-β (Aβ) angiopathy are prevalent in the aging brain of non-human primates, from lemurs to non-human Hominidae. Aβ but not hyper-phosphorylated tau (HPtau) pathology is the common nominator proteinopathy of non-human primate brain aging. The abundance of Aβ in the aging primate brain is well tolerated, and the impact on cognitive functions is usually limited to particular tasks. In contrast, human brain aging is characterized by the early appearance of HPtau pathology, mainly forming neurofibrillary tangles, dystrophic neurites of neuritic plaques, and neuropil threads, preceding Aβ deposits by several decades and by its severity progressing from selected nuclei of the brain stem, entorhinal cortex, and hippocampus to the limbic system, neocortex, and other brain regions. Neurofibrillary tangles correlate with cognitive impairment and dementia in advanced cases. Aβ pathology is linked in humans to altered membrane protein and lipid composition, particularly involving lipid rafts. Although similar membrane alterations are unknown in non-human primates, membrane senescence is postulated to cause the activated β-amyloidogenic pathway, and Aβ pathology is the prevailing signature of non-human and human primate brain aging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.