Abstract

Lead ion (Pb(2+), a heavy metal ion existed every aspect of life) is one of the most important hazards for environment and human health. Herein we design an in-situ amplified electronic monitoring system for sensitive determination of Pb(2+) on Pb(2+)-specific DNAzyme-modified sensing interface. The assay consists of target-triggered cleavage of Pb(2+)-specific DNAzyme, initiator strand-induced DNA hybridization chain reaction, formation of hemin/G-quadruplex -based DNAzyme and its automatically catalyzed polymerization of aniline monomer along the double-stranded DNA. Experimental results indicated that the catalytic currents of the as-produced polyaniline were linearly dependent on target Pb(2+) concentrations from 0.05 to 50nM with a detection limit (LOD) of 32pM. Such a synergistic effect of hybridization chain reaction with DNAzyme-catalyzed polymerization provided a universal platform for sensitive screening of target Pb(2+), thereby holding great promise for application in practice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.