Abstract

Elevated phosphorylation of AMP-activated protein kinase (AMPK) has been shown to inhibit skeletal muscle growth in both culture and animal models, but its role in differentiation of muscle cells is less clear. p21 is known to have an important role in differentiation, but AMPK's role regulating p21 in differentiation in muscle cultures is unknown. Therefore, the purpose of this study was to determine the role of p21 in differentiation of skeletal muscle cells under conditions of elevated AMPK phosphorylation. Treating C(2)C(12) myoblast cultures with 1 mM 5-aminoimidazole-4-carboxamide 1-beta-D-ribonucleoside (AICAR) for up to 24 h induced AMPK phosphorylation. Activation of AMPK reduced p21 protein and mRNA expression, which was associated with reduced G(1)/S cell cycle transition and p21 promoter activity. AICAR-treated myoblasts undergoing differentiation also had reduced p21 protein expression, reduced myotube formation, and myosin accumulation. When myotube cultures were treated with AICAR for 24 h, p21, myosin protein expression, and MyoD were significantly reduced. Myotube atrophy was also apparent compared with control conditions. Addition of compound C, an AMPK inhibitor, attenuated AICAR's negative effects on the myotube cultures. The nuclear expression of p21 protein appeared to be more affected by AICAR-treated myotubes than the cytosolic portion of p21 protein, which was attenuated with compound C treatment. Further analysis revealed that AICAR treatment increased PGC-1alpha and decreased FOXO3A protein expression, which was reversed with compound C cotreatment. Knockdown of PGC-1alpha with shRNA corroborated the compound C data, preserving nuclear FOXO3A and p21 protein expression. These data demonstrate that AICAR-induced AMPK phosphorylation inhibits cell cycle transition, reducing differentiation of myoblasts into myotubes, through PGC-1alpha-FOXO3A-p21.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.