Abstract

Reversible addition−fragmentation chain transfer (RAFT) polymerization was employed for the preparation of homopolymer and copolymer (co)networks based on four monomer units, belonging to three monomer types: methacrylates, acrylates, and styrenics. In particular, n-butyl methacrylate and 2-(dimethylamino)ethyl methacrylate (DMAEMA) (hydrophobic and hydrophilic-ionizable methacrylate monomers, respectively), n-butyl acrylate (hydrophobic) and styrene (hydrophobic) were used. Amphiphilic block copolymer conetworks were prepared by RAFT via the cross-linking of linear triblock copolymer precursors possessing two active polymer ends, which were subsequently interconnected by chemical cross-linking to a three-dimensional network, by using the appropriate cross-linker: ethylene glycol dimethacrylate for methacrylates, ethylene glycol diacrylate for acrylates, and 1,4-divinylbenzene for styrenics. The homopolymer and copolymer precursors to the (co)networks were characterized by gel permeation chromatography and 1H NMR spectroscopy for their molecular weights and compositions, respectively. The degrees of swelling (DSs) of all (co)networks were determined in tetrahydrofuran and, where the ionizable (DMAEMA) was present, the DSs were also measured in neutral and acidic water. The conetworks swelled more in acidic than in neutral water due to the ionization of their DMAEMA units.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.