Abstract

Nitrous oxide is an important greenhouse gas and there is a need for sensitive techniques to study its distribution in the environment at concentrations near equilibrium with the atmosphere (9.6 nM in water at 20 °C). Here we present an electrochemical sensor that can quantify N2O in the nanomolar range. The sensor principle relies on a front guard cathode placed in front of the measuring cathode. This cathode is used to periodically block the flux of N2O towards the measuring cathode, thereby creating an amplitude in the signal. This signal amplitude is unaffected by drift in the baseline current and can be read at very high resolution, resulting in a sensitivity of 2 nM N2O for newly constructed sensors. Interference from oxygen is prevented by placing the front guard cathode in oxygen-consuming electrolyte. The sensor was field tested by measuring an N2O profile to a depth of 120 m in the oxygen minimum zone of the Eastern Tropical North Pacific Ocean (ETNP) off the coast of Mexico.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.