Abstract

Present work investigates the application of electro-catalytic oxidation (EO) technique using dimensionally stable anode, titanium coated with ruthenium dioxide (Ti/RuO2), for abatement of amoxicillin trihydrate (AMT), a much commonly prescribed antibiotic detected in water and wastewater. AMT removal efficiency (%ARE) and TOC (Total organic carbon) removal efficiency (%TRE) were measured by varying process parameters such as initial pH, current density (i), initial AMT concentration (C0) and supporting electrolyte (NaCl) concentration (S0). Mineralization current efficiency (%MCE) and specific energy consumption (SEC) values were evaluated and compared for different values of i and S0. Furthermore, decay kinetics of AMT was studied by varying i and C0. Moreover, AMT degradation and mineralization mechanism was explored in detail. Additionally, a possible pathway of AMT degradation/mineralization was proposed by identifying the intermediates formed during EO reactions using UPLC-Q-TOF-MS. Besides, economic feasibility of EO treatment method was analysed by calculating the operating cost. The optimum current density and initial pH were found to be 5.88 mA cm−2 and 7.0, at which, 60% ARE and 48% TRE were achieved in 60 and 240 min of electrolysis, respectively. Mineralization current efficiency was observed decreasing from 11.77% to 7.67% with increasing i value.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.