Abstract

More than 80 % of China's grasslands are classified as degraded, and the loss of soil carbon storage due to degradation has a significant impact on China's terrestrial carbon sinks as well as carbon neutrality targets. The loss of soil carbon storage in degraded grasslands can serve as a benchmark for quantifying the carbon sequestration capacity of restored grasslands in the future. Here, above- and below-ground biomass, soil organic carbon (SOC) content at various depths (0–100 cm) and soil bulk density were collected from 226 degradation sequences around China. The above information was integrated and statistically analyzed to quantify the difference of SOC storage between the degraded and natural grassland at national scale. The result showed that grassland degradation led to a significant reduction in SOC storage across different depths. SOC (0–100 cm) of degraded grassland decreased by 39 % compared to that of natural grassland, ranging from 21 % in the lightly degraded sites to 59 % of the extremely degraded sites. 15 potential predictors were used to estimate the national amount of these differences of 0–20 cm depth SOC storage as 5.29 ± 1.59 Pg C. This considerable carbon storage gap implies the necessity of China's grassland restoration project in achieving carbon neutrality goals in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.