Abstract

AbstractOne of the most effective techniques used to obtain high quality amorphous silicon alloys is the use of hydrogen dilution during film growth. The resultant material exhibits a more ordered microstructure and gives rise to high efficiency solar cells. As the hydrogen dilution increases, however, a threshold is reached, beyond which microcrystallites begin to form rapidly. In this paper, we review some of the interesting features associated with the thin film materials obtained from various hydrogen dilutions. They include the observation of linear-like objects in the TEM micrograph, a shift of the principal Si TO band in the Raman spectrum, a sharp, low temperature peak in the H2 evolution spectrum, a shift of the wagging mode in the IR spectrum, and a narrowing of the Si (111) peak in the X-ray diffraction pattern. These spectroscopic tools have allowed us to optimize deposition conditions to near the threshold of microcrystallinity and obtain desired high quality materials. Incorporation of the improved materials into device configuration has significantly enhanced the solar cell performance. Using a spectral-splitting, triple-junction configuration, the spectral response of a typical high efficiency device spans from below 350 nm to beyond 950 nm with a peak quantum efficiency exceeding 90%; the triple stack generates a photocurrent of 27 mA/cm2. This paper describes the effect of the improved materials on various solar cell structures, including a 13% active-area, stable triple-junction device.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.