7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1111/1758-2229.12264
Copy DOIJournal: Environmental microbiology reports | Publication Date: Apr 8, 2015 |
Citations: 24 | License type: CC BY-NC 4.0 |
SummarySediments across the Namibian continental margin feature a strong microbial activity gradient at their surface. This is reflected in ammonium concentrations of < 10 μM in oligotrophic abyssal plain sediments near the South Atlantic Gyre compared with ammonium concentrations of > 700 μM in upwelling areas near the coast. Here we address changes in apparent abundance and structure of ammonia‐oxidizing archaeal and bacterial communities (AOA and AOB) along a transect of seven sediment stations across the Namibian shelf by analysing their respective ammonia monooxygenase genes (amoA). The relative abundance of archaeal and bacterial amoA (g−1 DNA) decreased with increasing ammonium concentrations, and bacterial amoA frequently outnumbered archaeal amoA at the sediment–water interface [0–1 cm below seafloor (cmbsf)]. In contrast, AOA were apparently as abundant as AOB or dominated in several deeper (> 10 cmbsf), anoxic sediment layers. Phylogenetic analyses showed a change within the AOA community along the transect, from two clusters without cultured representatives at the gyre to N itrososphaera and N itrosopumilus clusters in the upwelling region. AOB almost exclusively belonged to the N itrosospira cluster 1. Our results suggest that this predominantly marine AOB lineage without cultured representatives can thrive at low ammonium concentrations and is active in the marine nitrogen cycle.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.