Abstract

Background and PurposeOsteoarthritis, a major cause of disability in developed countries does not have effective treatment. Activation of TLR4 and innate immune response factors contribute to osteoarthritis progressive cartilage degradation. There are no clinically available TLR4 inhibitors. Interestingly, the antidepressant amitriptyline could block this receptor. Thus, we evaluated amitriptyline anti‐TLR4 effects on human osteoarthritis chondrocytes in order to repurpose it as an inhibitor of innate immune response in joint inflammatory pathologies.Experimental ApproachUsing in silico docking analysis, RT‐PCR, siRNA, elisa, proteomics and clinical data mining of drug consumption, we explored the clinical relevance of amitriptyline blockade of TLR4‐mediated innate immune responses in human osteoarthritis chondrocytes.Key ResultsAmitriptyline bound TLR4 but not IL‐1 receptor. Interestingly, amitriptyline binding to TLR4 inhibited TLR4‐ and IL‐1 receptor‐mediated innate immune responses in human osteoarthritis chondrocytes, synoviocytes and osteoblasts cells. Amitriptyline reduced basal innate immune responses and promoted anabolic effects in human osteoarthritis chondrocytes. Supporting its anti‐innate immune response effects, amitriptyline down‐regulated basal and induced expression of NLRP3, an inflammasome member from IL‐1 receptor signalling linked to osteoarthritis and gout pathologies. Accordingly, mining of dissociated and aggregated drug consumption data from 107,172 elderly patients (>65 years) revealed that amitriptyline consumption was significantly associated with lower colchicine consumption associated with inflammatory gout flare treatment.Conclusion and ImplicationsAmitriptyline blocks TLR4‐, IL‐1 receptor and NLRP3‐dependent innate immune responses. This together with clinical data amitriptyline could be repurposed for systemic or local innate immune response management in diverse joint inflammatory pathologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.