Abstract
We used a proteomic approach to study effects of amiodarone on cells of the yeast Saccharomyces cerevisiae. Amiodarone has been shown to have antifungal activity in vitro and causes a massive increase in cytoplasmic calcium levels ([Ca2+]cyt). Proteomic analysis of cells exposed to amiodarone show that this drug elicits stress responses and points to involvement of proteins associated with the cell wall. We tested several of those proteins for involvement in the Ca2+ flux. In particular, the amiodarone-induced Ca2+ flux was decreased in bgl2Delta cells, which have altered levels of beta-glucan and chitin. The involvement of the cell wall in the Ca2+ flux induced by amiodarone treatment was tested by addition of yeast cell-wall components. While mannan inhibited the rise in [Ca2+]cyt, beta-glucan potentiated the Ca2+ flux by 4.5-fold, providing evidence that the cell wall is directly involved in controlling this Ca2+ flux. This conclusion is corroborated by the inhibition of the Ca2+ flux by calcofluor, which is known to bind to cell-wall chitin and inhibit cell growth. Zymolyase treatment altered the kinetics of amiodarone-induced calcium flux and uncoupled the inhibitory effect of calcofluor. These effects demonstrate that the cell-wall beta-glucan regulates calcium flux elicited by amiodarone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.