Abstract
This study was designed to develop traps for hypochlorous acid (HOCl) which could be used to detect HOCl in the microenvironment of activated neutrophils. Reagent HOCl was found to react with para-aminobenzoic acid (PABA) in aqueous solution to produce a predominant metabolite detectable by high performance liquid chromatography (HPLC). Mass spectroscopy and nuclear magnetic resonance identified this metabolite as the ring addition product 3-chloro PABA. The related compound para-aminosalicylic acid (PAS) was also metabolized by HOCl to 3-chloro PAS. The formation of the 3-chloro metabolite was specific for reactions involving HOCl, since several other oxidants in chloride buffer failed to produce the metabolite. Human blood neutrophils activated by phorbol myristate acetate or zymosan in the presence of PABA (or PAS) used their HOCl to produce large amounts of the 3-chloro metabolite. The formation of 3-chloro PABA was inhibited by azide, catalase, and taurine, which is consistent with the production of the metabolite by the neutrophil myeloperoxidase (MPO) pathway. The reaction of HOCl with PABA and PAS was relatively slow as shown by competitive reactions with endogenous antioxidants like taurine, methionine, and glutathione. This was confirmed in reactions involving PABA/PAS and reagent HOCl or HOCl generated by the MPO enzyme system. In these in vitro systems, glutathione and serum completely inhibited the formation of the 3-chloro metabolite. In contrast, activated neutrophils metabolized PABA/PAS to the 3-chloro metabolite even in the presence of 1% serum. These findings demonstrate that PABA and PAS are specific trapping agents for HOCl produced by neutrophils in complex biological conditions. Copyright © 1997 Elsevier Science Inc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.