Abstract

Bacterial infection has become one of the major threats to human health all over the world, and the development and application of antibacterial materials has drawn great attention. Based on the Schiff-base structure, ZnONPs@ACFs are obtained by loading zinc oxide nanoparticles (ZnONPs) on amino cellulose fibers (ACFs) in-situ through the coordination of amino groups with metal ions. The results of FT-IR, XRD and UV-vis demonstrate that ZnONPs are successfully loaded and uniformly dispersed on ACF surface, and the ACFs maintain intact morphology observed by SEM. Furthermore, the zero-span tensile strength of ZnONPs@ACFs is 66.48 N/cm (ROL: 24.98 N/cm/s) under the optimum conditions, which indicates that ZnONPs@ACFs have a certain strength and can be used to make antibacterial sheet materials via paper-making wet-forming process. Accordingly, the ZnONPs@ACF composites show inhibition zones of 4.95 mm and 1.10 mm against E. coli and S. aureus, respectively. The new cellulose-based antibacterial materials demonstrate potential applications in the field of food packaging and biological medicine etc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.