Abstract

Sludge biochar as promising low-cost adsorbent has increasingly gained interests, but its poor surface functionality severely undermines its adsorption capacity and selectivity. Here a facile amino functionalization strategy was first proposed to enhance the surface functionality of sewage sludge derived biochar (SSDB) via the combination of sol-gel process for mesoporous silica coating and silylation for highly selective removal of Cu(II). The prepared amino-functionalized SSDB showed excellent adsorption capacity of 74.51 mg/g at room temperature, increasing by nearly 118% with regard to the unfunctionalized SSDB, and prominent selectivity (minute separation factor SFCo, Ni, Zn/Cu) toward Cu(II) uptake. Characterizations demonstrated amine groups on the SSDB, the surface density of which reached 1.34 mg/m2. The adsorption kinetics of Cu(II) on amino-functionalized SSDB was well described by a pseudo-second order kinetic model while the adsorption isotherm data was well fitted by Sips model. The pH range in which the adsorption preferentially occurred was 3–5. The occurrence of amine group protonation undermined adsorption performance at a pH < 3. These effects of amino-functionalized SSDB toward Cu(II) uptake were a result of the grafted amine groups specifically complexing with Cu(II) in the tetrahedron. Hence, prominent adsorption performance and low-cost feedstock make amino-functionalized SSDB a sustainable adsorbent for Cu(II) removal in water resulting in a cleaner utilization of sewage sludge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.