Abstract

Due to the increasingly widespread water pollutants and the high cost of treatment methods, there is a demand for new, inexpensive, renewable, and biodegradable adsorbent materials for the purification of wastewater contaminants. In this study, a new biocomposite aerogel (Amf-CNF/LS) was prepared using a chemically cross-linking method between the amino-functionalized cellulose nanofibers (Amf-CNF) and lignosulfonates (LS). The physical and chemical properties of the prepared aerogel were investigated using several techniques including elemental analysis, scanning electron microscopy (SEM-EDS), Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), and N2 adsorption-desorption analysis. The Amf-CNF/LS aerogel was then applied for the removal of methylene blue (MB), rhodamine B dye (RhB), and the heavy metal cadmium ion (Cd2+) from synthetic wastewater solutions. The adsorption parameters controlling the adsorption process including the pH, contact time, adsorbent dosage, and adsorbate concen-tration were optimized. High adsorption kinetics and isotherms were observed, with the adsorption isotherms of the Amf-CNF/LS aerogel fitting the Langmuir model with maximum adsorption capacities of 170.94, 147.28, and 129.87 mg/g for MB, RhB, and Cd2+, respectively. These results show that Amf-CNF/LS aerogel is a promising green and inexpensive adsorbent for MB, RhB, and Cd2+ removal from wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.