Abstract

The novel functionalization of multi-walled carbon nanotubes (MWCNTs) was synthesized by reacting trimethoxysilylpropanethiol (MPTs), hydrazine, ammonium ferrous sulfate, and ammonium ferric sulfate in sequence as efficient ways to introduce Fe3O4, amino and thiol groups onto the nanotubes sidewalls. The magnetic MWCNTs composite material (N2H4–SH–Fe3O4/o-MWCNTs) was characterized by transmission electron microscopy, field emission scanning electron microscopy, X-ray diffraction, thermo-gravimetric analysis, x-ray photoelectron spectroscopy, Fourier transformation infrared spectroscopy and magnetization curve. The results revealed that MPTs and hydrazine were coated on the surface of N2H4–SH–Fe3O4/o-MWCNTs. A series of batch adsorption experiments were conducted to study the experimental conditions, such as pH, contact time, initial concentrations and temperatures, which affected the adsorption process. The adsorption experiment results showed that the maximum equilibrium adsorption capacity of N2H4–SH–Fe3O4/o-MWCNTs for lead, zinc and phenol was 195.81mg/g, 169.89mg/g and 38.97mg/g at pH 6, respectively. The adsorption isotherm was better fitted by the Freundlich model, and the adsorption kinetics was consistent with pseudo-second order kinetics model. Furthermore, thermodynamic data showed that the adsorption process was spontaneous and exothermic. These results indicated that N2H4–SH–Fe3O4/o-MWCNTs may be promising surface modified materials for removing heavy metal ions and phenol from aqueous solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.