Abstract

Guanine-rich sequences are known to fold into G-quadruplex (G4) arrangements, which are present in oncogenes and in the telomeric regions of chromosomes. In particular, G4s represent an obstacle to functioning of telomerase, an enzyme overexpressed in cancer cells causing their immortalization. Therefore, G4 stabilization using small molecules represents an appealing strategy for the medicinal chemist. Ligands based on an anthraquinone scaffold, to which peptidic side chains were attached by an amide bond, were previously reported. We envisioned improving this ligand concept leveraging the click chemistry approach, which, besides representing a flexible, high yielding synthetic strategy, allows an elongation of the side chains and an increase of π-π stacking and H-bond interactions with the nucleobases through the triazole ring. Compounds were tested for their ability to interact with G4 DNA with a multiple analytical approach, demonstrating an elevated aptitude to stabilize the G4 and high selectivity over double stranded DNA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.