Abstract

Bisulfite mutagenesis techniques have been used to introduce single-point mutations within a region of the Rous sarcoma virus src gene defined by a BglI restriction endonuclease cleavage site. The mutants of Rous sarcoma virus that are produced by these techniques encode src proteins which contain single amino acid changes within a highly conserved amino acid sequence encompassing residues 430 to 433. DNA from the mutants CHpm26 ( Ala430 to Val), CHpm9 ( Pro431 to Ser), CHpm6 ( Glu432 to Lys), and CHpm65 ( Ala433 to Thr) each failed to transform chicken cells upon transfection, whereas DNA from CHpm59 (a third base alteration in the codon for Glu432 ) readily transformed chicken cells. Analysis of immune complexes containing the altered src proteins indicates that these proteins have decreased tyrosine protein kinase activity in vitro. In vivo labeling of cells infected with the mutant virus revealed diminished levels of the tyrosine-phosphorylated 34,000-molecular-weight protein. These data indicate that mutations within the sequence Ala430 - Pro431 - Glu432 - Ala433 lead to alterations in pp60src-specific tyrosine protein kinase activity and a concomitant loss of transforming potential of the mutant virus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.