Abstract

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a member of the tumor necrosis factor gene family, is considered as one of the most promising cancer therapeutic agents due to its ability to selectively induce tumor cell apoptosis. In this study, we investigated whether the Na +/H + exchanger inhibitor, amiloride, promotes TRAIL-induced apoptotic death both in sensitive and resistant tumor cells, HeLa and LNCaP cells, respectively, and its underlying molecular mechanism. Amiloride enhanced TRAIL-induced apoptosis and activation of caspase-3 and -8 in both cells. This compound increased TRAIL-induced mitochondrial cytochrome c release and poly(ADP-ribose) polymerase cleavage. Moreover, amiloride-induced intracellular acidification, and inhibited the phosphorylated activation of the serine/threonine kinase Akt, which is known to promote cell survival, in both tumor cells. These data suggest that amiloride sensitizes both tumor cells to TRAIL-induced apoptosis by promoting Akt dephosphorylation and caspase-8 activation via the intracellular acidification and that Na +/H + exchanger inhibitors may play an important role in the anti-cancer activity of TRAIL, especially, in TRAIL-resistant tumors with highly active and expressed Akt.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.