Abstract

A conventional complex variable boundary integral equation (CVBIE) in plane elasticity is provided. After using the Somigliana identity between a particular fundamental stress field and a physical stress field, an additional integral equality is obtained. By adding both sides of this integral equality to both sides of the conventional CVBIE, the amended boundary integral equation (BIE) is obtained. The method based on the discretization of the amended BIE is called the amended influence matrix method. With this method, for the Neumann boundary value problem (BVP) of an interior region, a unique solution for the displacement can be obtained. Several numerical examples are provided to prove the efficiency of the suggested method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.