Abstract

Silver nanoparticles (Ag-NPs) and its byproducts can spread pollution in aquatic habitat. Liver and gills are key target for toxicity. Oxidative stress, tissue alterations, and hemotoxicity are assumed to be associated with Ag-NPs in target animals. Cerium oxide nanoparticles (nano-ceria) show antioxidant potential in scavenging the free radicals generated in Ag-NP-induced oxidative stress. We determined ameliorated role of nano-ceria against Ag-NP-induced toxicity in fresh water Labeo rohita (L. rohita). Four groups were used in study including control, nano-ceria, Ag-NPs, and Ag-NPs + nano-ceria. Ag-NPs (30 mg l−1) and nano-ceria (50 µg kg−1) were given through water and prepared feed, respectively. The samples were taken after 28 days. Results demonstrated that pre-treatment of nano-ceria recovered L. rohita from Ag-NP-induced toxicity and oxidative stress. Nano-ceria pre-treatment actively mimics the activity of GST, GSH, CAT, and SOD. Furthermore, Ag-NPs’ treatment caused severe inflammation and necrosis in hepatic parenchyma which leaded to congestion of blood in hepatic tissues. Accumulation of a yellow pigment in hepatic tissue was also seen due to necrosis of affected cells. In nano-ceria pre-treatment, there was no congestion in hepatic tissue. Vacuolization of cells and necrosis in some area was recorded in nano-ceria pre-treated group, but the gill and hepatic tissue showed improvement against Ag-NP-induced damage. Nano-ceria pre-treatment also improved hematological parameters in Ag-NP-treated fish. This study concluded that Ag-NP-induced toxicity in treated fish and pre-treatment of nano-ceria show ameliorative role.

Highlights

  • Ag-NPs are much rapidly growing class with 438 commercially available nanoproducts in international markets (Khan et al 2015a; Wilson 2016)

  • The hydrodynamic size was measured through a Malvern Zeta sizer with back-scattering detector

  • A yellow pigment was accumulated in hepatic tissue which might be due to necrosis of affected effected cells (Fig. 9c)

Read more

Summary

Introduction

Ag-NPs are much rapidly growing class with 438 commercially available nanoproducts in international markets (Khan et al 2015a; Wilson 2016). Labeo rohita belongs to widely cultured Indian major carps in south Asia including Bangladesh, India, Myanmar, Nepal, and Pakistan (Dahanukar 2010; Froese et al 2016). This fish species inhibits freshwater rivers under a depth of 550 M and feed mainly on plankton (Wahab et al 1995). Gills are key organs for absorption and histo-pathological changes arise

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.