Abstract
Excess fluoride (F) exposure can cause oxidative stress in the kidney. As an antioxidant, selenium (Se) can potentially protect the kidney from F-induced injury in rats. Hence, the histopathological, renal biochemical, oxidative stress, and apoptotic-related indices upon exposure to 100mg/L sodium fluoride (NaF) and various doses of sodium selenite (Na2SeO3; 0.5, 1, and 2mg/L) were assessed. Our results demonstrated that F-mediated renal structural damage and apoptosis elevated the content of serum creatinine (SCr), inhibited the activity of catalase (CAT) in serum, and increased the production of reactive oxygen species (ROS) in kidney and malondialdehyde (MDA) in serum. Interestingly, 1mg/L dietary supplementation of Se tangibly mitigated these injuries. Furthermore, F could also change the gene and protein expression of the nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and NAD(P)H quinone oxidoreductase1 (NQO1). Concomitantly, the different concentrations of Se notably alleviated their expression. Taken together, 1-2mg/L Se ameliorated F-induced renal injury through oxidative stress and apoptosis-related routes. The recorded ameliorative effects might be related to the activation of the Nrf2/HO-1/NQO1 signaling pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.