Abstract
Alzheimer's disease (AD) is known as “type 3 diabetes”. As thioredoxin binding protein (TXNIP) has been shown to be involved in brain insulin resistance, the present study evaluated the roles of TXNIP, phospho-insulin receptor substrate 1 (P-IRS-1), and phosphatidyl inositol-3 kinase (PI3K) in the pathogenesis of AD. The potential ameliorative effect of bromelain compared to donepezil was evaluated in an aluminum chloride (AlCl3)-induced AD in rats. Behavioral tests demonstrated similar improvements in exploratory activity, cognitive and spatial memory functions, anxiety, and depression levels between rats treated with bromelain and donepezil. Donepezil was superior to bromelain in improving locomotor activity. Histopathological examinations demonstrated neuronal degeneration in the AlCl3 group that was almost normalized by bromelain and donepezil. Moreover, there was deposition of amyloid plaques in the AlCl3 group that was improved by bromelain and donepezil. Acetylcholine esterase levels were significantly increased in rats treated with AlCl3 group and significantly decreased in rats treated with bromelain and donepezil. Furthermore, AlCl3 group showed a significantly increased TXNIP and P-IRS1 and a significantly reduced PI3K levels. These effects were ameliorated by bromelain and donepezil treatment. The present study demonstrates a previously unreported modulatory effect of bromelain on the TXNIP/P-IRS-1/PI3K axis in AD model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.