Abstract

BackgroundA novel hemodialysis (HD) system employing electrolyzed water containing molecular hydrogen (E-HD) has been developed to improve the bio-compatibility of HD. This study examined the impact of E-HD on changes in redox state during HD and HD-related fatigue.MethodThis single-arm, prospective observational study examined 63 patients on chronic HD (41 males; mean age, 72 ± 9 years; median duration of HD, 7 years). Redox parameters (serum myeloperoxidase [MPO], malondialdehyde-protein adduct [MDA-a], thioredoxin 1 [TRX]) during HD were compared between control HD (C-HD) and E-HD after 8 weeks. Fatigue was evaluated using a numerical rating scale (NRS) during the 8-week course.ResultsIn C-HD, an increase in serum MPO accompanied increases in both oxidative products (MDA-a) and anti-oxidant molecules (TRX). In E-HD, although increases in MPO were accentuated during HD, changes in MDA-a and TRX were ameliorated as compared with C-HD. In patients who showed HD-related fatigue (47%) during C-HD, change in MDA-a by HD was a risk factor for the presence of fatigue. During the 8 weeks of observation on E-HD, those patients displayed significant decreases in fatigue scores.ConclusionE-HD ameliorates oxidative stress and supports anti-oxidation during HD, suggesting improved bio-compatibility of the HD system. E-HD may benefit patients with HD-related fatigue, but the mechanisms underlying changes to oxidative stress have yet to be clarified.

Highlights

  • A novel hemodialysis (HD) system employing electrolyzed water containing molecular hydrogen (EHD) has been developed to improve the bio-compatibility of HD

  • In Hemodialysis employing electrolyzed water containing molecular hydrogen (E-HD), increases in MPO were accentuated during HD, changes in MPO accompanied increases in both oxidative products (MDA-a) and thioredoxin 1 (TRX) were ameliorated as compared with C-HD

  • This unique profile may indicate a potential role of HD bioincompatibility in the development of fatigue in HD patients and suggests that enhanced oxidative stress could be involved with the pathological mechanisms

Read more

Summary

Introduction

A novel hemodialysis (HD) system employing electrolyzed water containing molecular hydrogen (EHD) has been developed to improve the bio-compatibility of HD. In patients receiving HD, the degree of fatigue can differ according to the presence or absence of HD, such as exaggerated fatigue on the days of HD, and less or even no fatigue on non-HD days [20, 22]. This unique profile may indicate a potential role of HD bioincompatibility in the development of fatigue in HD patients and suggests that enhanced oxidative stress could be involved with the pathological mechanisms

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.