Abstract

AimsRecent studies have revealed that neutrophil extracellular traps (NETs) provide negative feedback in the progression to chronic inflammation and contribute to the pathogenesis of multiple autoimmune diseases including type 1 diabetes (T1D). In addition, accumulating evidences suggest that gut immunity play a key role in T1D pathogenesis. Our study aimed to evaluate whether staphylococcal nuclease (SNase) targeting intestinal NETs can ameliorate the intestinal inflammatory environment and protect against T1D development in non-obese diabetic(NOD) mice. Main methodsDegradation of NETs with SNase in vitro was examined using SYTOX green assay. NOD/LtJ mice were oral administration of Lactococcus lactisl (L. lactis) pCYT: SNase and blood glucose levels were monitored weekly. Several biomarkers of NETs formation, gut leakage and inflammation were determined using a commercial ELISA kit. T Cell phenotypes in peripheral immune system were analyzed in flow cytometry and fecal samples were isolated to investigate intestinal microbiota. Key findingsThe oral delivery of SNase by L. lactis can decrease the NETs levels and ameliorate inflammation both in the intestine and pancreatic islets and finally effectively regulate the blood glucose levels of NOD mice. Meanwhile, zonulin and lipopolysaccharide levels also reduced in SNase-fed NOD mice, suggesting SNase could improve gut barrier function via intestinal NETs degradation. Furthermore, the abundances of the intestinal microbiota and butyrate-producing gut bacteria were also increased with SNase treatment. SignificanceSNase shows potential for intestinal NETs to prevent T1D based on the gut-pancreas axis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.